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Stability and Feasibility Proof of DMPC

I. SECTION I

Consider a discrete-time linear time-invariant system consisting of M subsystems. The dynamics of each sub-

system is described by
M
zi(k+1) = Az (k) + Z Aijzi(k) + Biui(k), )]
j=1
where z; € R™ C X; and u; € R™ C Uf;. The global system is described by
x(k+1) = Az(k) + Bu(k), )
where & £ [z1,...,2p] ER® C X and u 2 [uy, ..., up ] ER™ CU. X =X x ... x Xprand U = Uy X ... x Uy,

Assumption 1. For any subsystem described by Eq.(1), it is assumed that there exists the feedback control law
u; = K,x; such that (i) Aq, = Aui+ B K is Schur stable; (ii) Aq = A+ BK is Schur stable, where K; € R™*™,
K = dz’ag(Kl, ceny KM)

Assumption 2. For any subsystem i, given the positive definite symmetric matrix Q;, R;, we assume that (i) there
exists P; such that A} P;Aq, — P < —(Q; + KI RiK;); (ii) and ATPAq — ATPA; < (Q + KTRK)/2 holds
true, where P = diag(Px, ..., Pyr), R = diag(Ra, ..., Ry ), Q = diag(Q, ..., Q) and Ay = diag(Ag, s ..., Ady, )-

Lemma 1: If Assumption 1 and Assumption 2 hold true, then there exists a € small enough, and Kx € U such

that ¢(e) = {x € R™ : ||z||p < €} is an positive definite invariant set of the closed-loop system x(k+1) = Agz (k).

Proof: Define that V(z(k)) = ||z(k)||%. Since AL P;Aq, — P; < —(Qi + KI R;K;), there is ATPA; — P <
—(Q + KTRK). Then for the closed-loop system x(k + 1) = Agx(k), there is

V(e(k+1)) = V(ek) = [[Aaz(E)|P = (k)7
= a(k)" (A7 PAq — P)z(k)
=a(k)T(AYPA; — ATPA; + AT PA, — P)x(k)

< e (W) (Q + KT RE)a(k) < 0.

Thus, z(k + 1)¢(e) € {0}, i.e., a state within ¢(¢) can be controlled to reach 0 gradually. Meanwhile, since P
is a positive definite matrix, ¢(g) can be selected as {0}. That is, there exists € small enough and Kz € U so that
¢(g) is a positive definite invariant set. [ |

Consider the local performance index

N—-1
Tia(k)yui(k) = D (lwa(k + UR) G, + lui(k + 1) %) + |l:i(k + N1k)|,. 3)
=0
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The local optimization problem is

min  J;(z;(k),u;(k))

Ui(k)
st mi(k+ 1+ 10k) = Agai(k) + > Ak + k) + Bisui(k + 1|k) (4a)
JEN
! RE
ST = )ik + 1+ hlk) — 2} (k+ 1+ hlk - 1)|| < QXNM,; =0,.,N—2 (6a,6b)  (4b)
h=0 i
stk + Nlk) = &k + NB)p, < 577 (4D) (o)
€ .
llzi(k + 14+ 1|k)||p, — [|Z:(k + 1+ 1|E)|p, < pNM,l:(),...,Nfl (stability) (4d)
wi(k + k) € Us,1 =0,..,N—1 (4b) (4e)
€ .

xl(k—l—l—i—l\k) eX;,l=0,...N (4g)

In which, z;(klk) = x;(k), ¢i(557) = {@; € R™ : ||z;||p, < 557} is the terminal invariant set of subsystem i.

v€(0,1), k € (0,1) are parameters.

We assume that optimization problem (4) is feasible initially. Every subsystem solves (4) at time instant k
and obtains the optimal control sequence U} (k) £ [uf(k|k),...,u}(k+ N —1|k)], and the optimal state sequence
XF(t) = [2:(k + 1]k), ..., 2f (k + N|k)].

Then we need to build a feasible control input sequence U;(k+1) of time instant (k1) such that the global
system is stable and the feasible region of the optimization problem (4) is non-empty. The design method is as
follows.

Based on the optimal control sequence U (k) = [u} (k|k), ..., uf (k+ N —1|k)], the feasible control input sequence
Ui(k+1) & [u;(k+ 1|k +1),...u;(k + N|k + 1)] is designed as

wf(k + 14 1|k), 1=0,1,..,N -2
w(k+14+1k+1) = .
Kizi(k+1+1k+1), |=N-1
Next, we need to determine the initial feasible state sequence X;(k + 1) £ [Z;(k + 2|k + 1),...,Z;(k + 1 +
N|k + 1)] of subsystem i. The associated state sequence comes from the time k, i.e., the given information is

X (k) £ [23(k|k), x5 (k + 1]k), ..., 2} (k + N|k)]. To compute X;(k + 1), the estimated associated state sequence
Xj(k+1)2 [&;(k+ 1k +1),...,&;(k + N + 1]k 4 1)] is obtained by

ek +1+1k), =01, N1
Eik+1+1k+1) = .

Agx5(k+1k), I=N
Then, according to U;(k + 1) and X;(k + 1), the feasible state sequence X;(k -+ 1) can be obtained by

Forany [ =0,...N —1

Ti(k+2+1k+1) = Auzi(k+ 1+ 1|k + 1)+ Byug(k+ 1+ 1k +1) + Z Ayzj(k+1+1E+1), (5
jeM11
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where Z;(k + 1|k + 1) = x;(k + 1) is the current subsystem state and is obtained by measurement.

A. Feasibility Proof

Theorem 1: (feasibility) For the system described by (2), we assume that the problem (4) is initially feasible. If

the controller design of every subsystem satisfies the following conditions,

1 —
5 < ( 7) (62)
max  2M\? (P, (Al“)TP AFtp” 5
le{o,...,N—2}
N-2 u
S RN -2 - k)t < (6b)
h=0 VAQ(PJ
1= min (P, 20PN < (1—k)? Qi =Q + KPR (6¢)

where §;(k) = ||e;(k)||p, = ||zi(k) — x(k|k — 1)||p,, then the feasible region of the optimization problem (4) at

any time k is non-empty.

Proof: Now we intend to prove that at any time (k + 1), the constructed control input sequence U;(k + 1)
meets all the constraints of the optimization problem (4), i.e., it is a feasible solution of (4).
(i) constraint (4b): 22_0 (I—=h)|zi(k+2+hlk+1)—zi(k+2+hlk)| < X,'T,EMJ =0,...N -2
(21\1 N,/ \1, condition (6a, 6b) is proposed.)

First, we derive that:
1=0,2;i(k+2/k+1) = Auzi(k + 1k + 1) + Buw(k + 1k + 1) + > Ayd(k+ 1k +1)
JENH

1=1,2(k+3lk+1) = Aui(k + 2|k + 1) + Bistis (k + 2/k + 1) + Y Ay (k+ 2k +1)
JENH

= AZZi(k + 1k + 1) + Ay Biitis (k + 1|k + 1) + Y AuAid;(k+ 1k +1)
JENY

+ Bii’ai(k} + 2|]€ + 1) + Z Aij.f?j(k + 2|k + 1)
JENE
l=2,%;(k+4lk+1) = A;z;(k+ 3|k + 1)+ Buu;(k+ 3|k + 1)+ Z Aj;zj(k+3lk+1)
JENH
= ASZi(k+ 1k + 1) + A} Byti; (k+ 1|k + 1) + Y AZAjd;(k+ 1k + 1) + Ay Bigui(k + 2|k + 1)
JENY

+ Z A Ai;zj(k+ 2|k +1) + Bui(k+ 3k +1) + Z Az (k+ 3|k +1)
JENH JENH

Forany [ =0,...N—1

ik + 142k +1) = Az (k +1) +ZA hBiitis(k+ 14 hlk+1) + ZZAl "Aiij(k+1+hlk+1)
JEN h=0

(7
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where Z;(k+ 1|k +1) = z;(k+1). Similarly, based on the optimal control input sequence U;*(k), the optimal state
xf(k + 1+ 2|k) is denoted.
For any | =0,..., N — 2

l
wi(k+1+2)k) = AL ai (k + 1)k) +ZAl "Biui(k+1+hlk)+ Y Y AT"AE(k+ 1+ hlk) (8
JEN¥ h=0
Then for any [ =0, ..., N — 2, there is

Ti(k+1+2|k+1) —af(k+1+2[k)

= Atz (k+1) +ZA1 "Buti(k+1+hlk+1)+ > ZAl "Ayzi(k+1+hlk+1)
h=0 JENE h=0
l l
— Al (k4 10k) = D AL By (k+ 1+ hlk) = Y > A" Ayds(k+ 1+ hlk)
h=0 JENY h=0

By definition, u;(k + 1+ h|lk+ 1) = uf(k+ 1+ hlk), for any h =0,..., N — 2, we have

Ti(k+1+2|k+1)—xf(k+1+2lk)

= A ik + 1) —af (k+ 1k)] + > ZAZ "Aij[2(k+1+hlk+1) —3;(k+ 1+ h|k)]
JENY h=0

A ek +1)+ Y Tk +1),0), 9)
JENY

where we define that e;(k + 1) = ;(k + 1) — 2 (k+ 1|k), n;(k+1) = 2;(k+ 1+ hlk+ 1) — &;(k + 1 + hlk),
Ty (i (k +1),0) = 3520 AG " Ay (k + 1),

On this basis, now we begin to prove that, for any [ = 0,..., N — 2, since ||z + y||p < ||z]|p + ||y]

p, there is
|Z:(k+1+2|k+1) —af(k+ 1+ 2[k)| A

= [ AG etk + 1)+ > Tiln;(k+ 1), D)l

JENM

<A ek + V)lle + D 1Tk +1),0)|e,
JEN

= lles(k + Dll gtrryrpatsr + > ZnAl " ik + 1)|lp,
JENH h=0

l

B ||P2 (k + 1)||P7%(AH.'1)TP1-AH.'1P.7% + ZN Z Hnj(k + 1)||(Ai;hAij)TPi(Ai;hAij)
s i i D JEN™ he0

1 _1
<XE (P (AT RAL P ) e

> ZXE AR AT PI(AL" Aig))lIns (R + 1)
JENY h=0

l
—1 _1 _1
<N (P (AT RATR )0k + )+ D D> wl =Rk + 1)
JEN h=0
l
—1 _1 _1
<N (P (A PP )0 (k 4+ 1) + NP Y w(l = h) (R + 1), (10)
h=0
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1

where we define that &;(k) = [le;(k)||p, m(s) = max  A?((A3A4;;)T Pi(A3Ai5)) and N = max || is the
i JEM i#] €M

s

biggest number of the upriver neighbors among all subsystems 4. Because for any h = 0,...,N — 2, 2;(k+ 1+

hlk +1) = x}(k + 1+ h|k) holds true, then there is

nj(k+1)=a;(k+1+hlk+1)—i,;(k+1+hlk)
=i (k+1+hlk) —zj(k+1+hlk—1),

which must meets the constraint (4b). Thus, for any j € V¥, we have

l

Yol = h)n(k+1)]| <

h=0
Substitute (11) to (10) and by condition (6a), for any [ = 0, ..., N — 2, we have

KE
NN an

Zi(k + 1+ 2k +1) —a}(k+1+2)k)||p,

l

<SN(P AT RAT P )5k 4+ 1) + NS (= W)l (k + 1)
h=0
(1 —~v)ke VKE _ KE (12)
= oM oM 2M

By definition of 7 (s), we know that for any I,h = 0,..., N — 2, there is (Il — h) > 0. Meanwhile, according to
AF)||=]” < [lz)1F < A(F)||

2 (F > 0), we have ||z|| < /\”fi‘(lg) Then, by condition (6b), there is

MN

7l — h)| @k + b+ 2k + 1) — 27 (k + h + 2[k)|

h=0
Sl A2 ) il 20
P A2 (P)
l
KE
<N wl-h)—F—
h=0 2M A% (F)
N-—2 N YKe yke
< N2 h)— . < "
2.7 VNP NI S N (13

Therefore, Ziz:o 7l = h)||z;(k + 2+ hlk +1) — 2 (k+ 2+ hlk)|| < 55577,0=0,..., N — 2 is proved.

(i) constraint (4c): [|Z;(k + N + 1|k + 1) — 2;(k + N + 1|k + 1)||p, < 557. (constraint (4b) is required.)
First, we prove that Z(k + N|k + 1) € ¢(e).
We know that x} (k + N|k) € ¢i(557). by (12), there is

RE

|1Zi(k + Nk + Dllp, — llzi (k + NIE)| 7 < [|2i(k + Nk +1) = 27 (k + Nlk)llp, < 577

(14)
Thus, there is

KE e (l+re ¢
oM T3 T 2M M (13

|z:(k + Nk +1)]

p; <
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Then we have

M 2
_ o _ 2 4,1 £
ot Nk + )1 = (3 (b Nk + DI < (77

M)%<€

So Z(k+ N|k + 1) € ¢;(¢). By Lemma 1, @;(k + N|k + 1) = K;Z;(k + N|k 4+ 1) holds true. In the invariant

set, we use linear feedback control, thus, there is

Ti(k+ N+ 1k +1) = AuZi(k + N|k + 1) + B;; K; 2 (k + Nk + 1)

= Ag,Zi(k+ Nk +1)
Meanwhile, by the definition of Z;(k + 1+ [|k + 1), for [ = N, there is

#i(k+ N+ 1k +1) = Ag,x} (k + N|k)

(16)

a7

Use (16)-(17). Since ||z||r < ||z]|¢ holds if F < G (if F —G <0, ||z||r — ||z]|l¢ = 2T (F — G)z < 0), and by

Lemma 1, i.e., AdTiPz'Ad,- — P, < —Qi, by (14), it derives

|lz:(k + N+ 1k +1) —&;(k+ N + 1|k + 1)]

P;
= [|Aa; (zi(k + Nk + 1) — 27 (k + N|k))]|p,
= @ik + Nk + 1) = 27 (k + NIK))llag p,a,,

< (@i (k + Nk +1) — a7 (k+ Nk))| p,
KRE

< =75
2M

which ends the proof.

(iii) constraint (4d): ||z;(k + 1+ 2|k + 1)|

B = Tk + 1+ 20k + Dllp, < 55371
P, < ||T(k + 1+ 20k + 1)

Since 77 2 0, 50 [|Zi(k +1+ 2k + 1)

(iv) constraint (4e): w;(k + 1+ 1|k +1) € U;,l =0,..,N — 1. (¢ — 557, inequality (12) is required).

(Note that, in (4b), there should include ae, here we select ke to decrease the number of parameters).

=0,.,N—1.

P, + 5aar 1S always true.

(18)

By definition, since u} (k+1|k) € U;, 1 =0,..., N —1, there is @;(k+1+1|k+1) € U;, forany I =0,..., N — 2.

That is, we need to prove that @;(k + N|k + 1) € U;.

By definition, we have u;(k+N|k+1) = K;z;(k+ N|k+1). Since 2} (k+N|k) € ¢i(557)-

537+ Then by (12), there is

1Zs(k + NIk + Dllp, < |2k + N

K 13 13
oM o S oM

()

<

k4 1) —xi(k+ NIE)| P, + [lz7 (k + Nk)|| P,

i (k+N|k)|

P <

19)
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Therefore, Z;(k + N|k + 1) € ¢i(557)- Since

M 2
ik + Nk +1)||p = ik + Nk +1|2) = (- - M)E = 20
[Z(k + NIk +1)[lp (;Hx( Nk DIR)? = (5 - M)? = gomr <e (20)

By Lemma 1, KZ € U, thus, @;(k + N|k + 1) = K;z;(k + N|k + 1) € U; holds true.

(v) constraint (4f): Z;(k + N + 1|k + 1) € ¢i(557)- (557 — 317> constraint (4c) is required, condition (6¢c) is

proposed)
In light of the triangle inequality ||z + y|| < ||| + ||y

, and by (4c), we have

|Zi(k+ N+ 1|k + 1)

P < @ik + N+ 1k + 1) = @ik + N + 1k + 1)

P+ |2i(k+ N+ 1|k +1)]

P;
RE

2M
Since &;(k + N + 1|k + 1) = Ag,z;(k + N|k) and by Lemma 1, A} PiAy, — P; < —Q; holds true, where
Qi = Q; + KT R;K;, we can obtain that

<

+ ||Z:i(k + N 4+ 1]k 4+ 1)| p, (21)

&:(k + N + 1k + D)3, — Iz} (k + N|k) |3, = I} (k + N|k)||f4§_PiAdi — |lzj (k + N|k)||3,
= ||z} (k + N|k)||,24§_PiAdi—P,-

<l (B + N2 5, = —ll2i (k + NF)[F, (22)

According to the inequality A\(F)||z|* < ||z||% < A(F)|z||?, where A\(F) is the smallest eigenvalue of matrix
F and A(F) is the largest eigenvalue of F'. Meanwhile, because z} (k + N|k) € ¢;(55;) holds true, i.e., [z} (k +

N|E)|lp, < and ||Fz|| = ||z||prp, then there is

£
2M°

|z} (k + NIK), = a7 (k + N|k)T Qix; (k + NIk)

2
la,

*

= —ai(k+ NIK)TPE (P 2QiP, *)PEa;(k + NIk)

(S

— —(PZa; (k+ NIk)T (P, 2Q,P *)(P2a; (k + NJk))

1
— —|PPai(k+ NIB|>
Pi 2Q1'Pi 2
< AP 2 QP %)||PEat (k + NIk
= AP 2Q,P )| (k + NIk)|3, (23)
Substituting (23) into (22), we have
1 4 _1
las(k+ N + 1k +1)]3 < (1= AP, 2Q:P, %))l (k + N|k) |3,

Therefore,

sk + N+ 1k + Dl < V1 - AP EQuP )ik + NIE) o,

Vi-aErarh 4)



NOTES, TING BAI, JANUARY 16, 2019. 8

1

1. 1 ‘
Then, substitute (24) into (21), since the condition (6¢) holds true, i.e., 1 — min A(P; 2Q; P, ?) < (1 — k)2,

ieM
there is
RE N
||fi(l€+N+1|k+1)|Pi<m+”$i(k+N+1|k+l)|Pi
RE _1 4 _1 &
< —— +\1-X\P; 2Q;P; ?) —
wioartart <

(25)

Thus, z;(k + N + 1|k + 1) € ¢;(55;7) is proved.
Taken the above together, U;(k + 1) is a feasible solution of the optimization problem (4) at time instant k -+ 1,

so the feasible region is non-empty.

B. Stability Proof

Theorem 2: (stability) For the system described by (2), we assume that conditions (6a)-(6c) are satisfied. If the

parameters &;, K, p still meet the following condition

M
€ N — 1)ke
p+(2)+zaz<
1=1

;P> 2 (26)

Do M

then the global closed-loop system is stable.

Proof: When the system state is outside the terminal invariant set, we use DMPC algorithm to compute the

optimal control input, the candidate Lyapunov function is denoted by V,,:(X (k)) = Zi\il Zl]io l|x: (k + U k)|

P
while when the system state is within the terminal invariant set, we use the feedback control law, the candidate
Lyapunov function is denoted by V;,(x(k)) = ||z (k)| p. According to the Theorem 2.7 of [1], if V(X (k)) and
Vin (X (k)) are the Lyapunov functions, i.e., positive and monotonically decreasing functions, meanwhile, at the
switching time instant 7, there is Vi, (2(7)) — Vout(2(7 — 1)) < 0, then the global closed-loop system is stable.
(i) Prove Vi, (x(k 4+ 1)) — Vin(x(k)) <0

By Lemma 1, there is

M
ok + DB = llz(0)lE = Aaz (W7 = le(W)E = l2(0) 137 pa,—p = > i (k) ag p,ag,-p, <0 @27
i=1 )

Meanwhile, since V7 (2(k + 1)) — Vi (x(k)) = [Vin(z(k + 1)) + Vi (2(k))][Vin(2(k + 1)) = Vin(2(k))]. and
Vin(z(k 4+ 1)) + Vin(x(k)) > 0, so there is

Vin(x(k +1)) = Vin(2(k)) <0 (28)

Therefore, for any x(k) € ¢(¢), Vin(z(k)) is a Lyapunov function.
(ii) Prove Vi, (2(7)) — Vour (X (7= 1)) <O
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Since [|2(7)[|p < € and [lz(7 —1)||p > &, meanwhile, |21 p, + [lz2[lp, + ... + [2arllpy = |2l = [J2T Pras +

23 Poxo + ... + 21, Pyra ||, so we have

Vin(2(7)) = Vou(z(1 — 1)) = [lz(r HP_ZZHCUZ T+1—1r = 1)|p

=1 =0
M N
= [lz(r IIP—ZII%T—IIT—IHP S it +1 =1 = Dp,
=1 1=1
M N
<lae@)llp = llz(r = Dllp = DD lai(r +1 =17 = 1)|p,
=1 I=1
M N
<=3 it +1-1r=1)|p, <0 (29)

=1
(ii) Prove Vo, (X" (k + 1)) — Vou (X*(k)) < 0, (/)NS\/Wi > p]\ffM, 2\"5@7 > %7, constraint (4d) is required,

condition (26) is proposed.)

By constraint (4d), i.e., ||zf(k+ 1+ 1|k)||p, < ||Z:(k+ 1+ 1|k)||p, + oware L =0,.., N — 1, there is
N N
Vi(XF (b +1) = Vi(XF (k) = D ek + 1+ 1k + Dllp = > ik + k)| p,
1=0 1=0
N-1 N
=D i (k+ 142k + )5 + [l ( D llzi e+ UR) e
1=0 1=0
. N-1 N
< owar NV Do lzilk+ 142k + 1)llp, = Y |25 (k + UKl e, + i (k+ 1D)]lp,
1=0 =0

According to (12), i.e., for any [ = 0,..., N =2, [|Z;(k + 1+ 2|k + 1) — 2} (k + 1+ 2|k)||p, < 557, and by (25),

we have
- N-2 N—
Vi(X;(k+ 1)) = Vi(X[ (k) < S oM + Z [[2:( Z Tk 142k |p, + |27 (B + 1) p,
1=0
+ |z (k + N + 1k + 1) |27 (k + 1[k) 27 (k)| p;

Zi(k+ N+ 1k + 1) p,

+Z||xz k+ 142k +1) — 2 (k+ 14 2/k)

pM
+ [li(k+1) = fﬂf(kJrllk)HPi = llz:(k)||
€ (N —1)ke
<— +—2= 4 — ; .
<ot Tawr 2M +0i — [l (k)| (30)

> ||z|| p, moreover, z(k) ¢ ¢(e), i.e., ||z|p > €. If condition (26) holds true, then we

Since 327, [l (k)|
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can obtain that

M

Vout (X% ( + 1)) = Vout(X*(K)) = S [VA(X7 (k1)) — V(X (k)
i=1
M

(N —1)ke €
<Y st o+ 0 — _
= ‘ [pM+ M +2M +5z sz(k)'Pl]

M
(N —1)ke
P B S el

M
e (N—1ke «
-+ - — 0; < 0.
R > 6
By condition (4d), i.e., m + vail 0; < 5, so there is

Vot (X" (ke + 1)) — Vue (X" (K)) < 0.

Thus, we prove that V(X (k)) is the Lyapunov when x(k) ¢ ¢(¢).

Taken the above together, if the condition (4d) is fulfilled, the stability of the global system is guaranteed.
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